Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Shock ; 61(4): 557-563, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604133

RESUMO

ABSTRACT: Escherichia coli and Staphylococcus aureus are two of the most common bacterial species responsible for sepsis. While it is observed that they have disparate clinical phenotypes, the signaling differences elicited by each bacteria that drive this variance remain unclear. Therefore, we used human whole blood exposed to heat-killed E. coli or S. aureus and measured the transcriptomic signatures. Relative to unstimulated control blood, heat-killed bacteria exposure led to significant dysregulation (upregulated and downregulated) of >5,000 genes for each experimental condition, with a slight increase in gene alterations by S. aureus. While there was significant overlap regarding proinflammatory pathways, Gene Ontology overrepresentation analysis of the most altered genes suggested biological processes like macrophage differentiation and ubiquinone biosynthesis were more unique to heat-killed S. aureus, compared with heat-killed E. coli exposure. Using Ingenuity Pathway Analysis, it was demonstrated that nuclear factor erythroid 2-related factor 2 signaling, a main transcription factor in antioxidant responses, was predominately upregulated in S. aureus exposed blood relative to E. coli. Furthermore, the use of pharmacologics that preferentially targeted the nuclear factor erythroid 2-related factor 2 pathway led to differential cytokine profiles depending on the type of bacterial exposure. These findings reveal significant inflammatory dysregulation between E. coli and S. aureus and provide insight into the targeting of unique pathways to curb bacteria-specific responses.


Assuntos
Infecções por Escherichia coli , Infecções Estafilocócicas , Humanos , Escherichia coli , Staphylococcus aureus , Fator 2 Relacionado a NF-E2/genética , Regulação da Expressão Gênica
2.
Adv Anat Embryol Cell Biol ; 234: 205-221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34694483

RESUMO

Placenta forms as a momentary organ inside the uterus with a slew of activities only when the woman is pregnant. It is a discoid-shaped hybrid structure consisting of maternal and embryonic components. It develops in the mesometrial side of the uterus following blastocyst implantation to keep the two genetically different entities, the mother and embryo, separated but connected. The beginning and progression of placental formation and development following blastocyst implantation coincides with the chronological developmental stages of the embryo. It gradually acquires the ability to perform the vascular, respiratory, hepatic, renal, endocrine, gastrointestinal, immune, and physical barrier functions synchronously that are vital for fetal development, growth, and safety inside the maternal environment. The uterus ejects the placenta when its embryonic growth and survival supportive roles are finished; that is usually the birth of the baby. Despite its irreplaceable role in fetal development and survival over the post-implantation progression of pregnancy, it still remains unclear how it forms, matures, performs all of its activities, and starts to fail functioning. Thus, a detailed understanding about normal developmental, structural, and functional aspects of the placenta may lead to avoid pregnancy problems that arise with the placenta.


Assuntos
Implantação do Embrião , Placenta , Animais , Feminino , Humanos , Camundongos , Gravidez , Útero
3.
Food Chem Toxicol ; 156: 112520, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34464637

RESUMO

Excess iron causes oxidative damage of biomolecules, leading to tissue injury primarily liver failure. In this study, we explored the remediating effects of Morus alba L. (MAME) on iron-overload-induced oxidative stress and liver injury in mice. The In vitro study revealed the antioxidant and free radical scavenging properties of MAME. Intraperitoneal injection of iron-dextran was administered in Swiss albino mice to induce iron-overload condition and the mice were further treated with MAME. MAME treatment significantly decreased liver iron, serum ferritin level, oxidative stress, and restored serum parameters and liver antioxidants. Moreover, biochemical and histopathological analyses confirmed the alleviated liver damage and fibrosis upon MAME treatment. The protective effect of MAME against iron-overload-induced apoptosis was confirmed by upregulation of protein levels of Bax, Caspase-3, and PARP. The treatment also affected the expression of MAPKs (ERK, JNK, and p38). GC-MS analysis revealed the presence of various bioactive phytochemicals in MAME that may be responsible for ameliorating effects of excess iron. Thus MAME can be envisaged as an effective iron chelator in the treatment of iron-overload-induced liver injury and fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Sobrecarga de Ferro/tratamento farmacológico , Ferro/efeitos adversos , Morus/química , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/metabolismo , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/uso terapêutico , Frutas/química , Ferro/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Compostos Fitoquímicos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Distribuição Aleatória , Espécies Reativas de Oxigênio
4.
Int J Mol Sci ; 22(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34360700

RESUMO

Maternal infection-induced early pregnancy complications arise from perturbation of the immune environment at the uterine early blastocyst implantation site (EBIS), yet the underlying mechanisms remain unclear. Here, we demonstrated in a mouse model that the progression of normal pregnancy from days 4 to 6 induced steady migration of leukocytes away from the uterine decidual stromal zone (DSZ) that surrounds the implanted blastocyst. Uterine macrophages were found to be CD206+ M2-polarized. While monocytes were nearly absent in the DSZ, DSZ cells were found to express monocyte marker protein Ly6C. Systemic endotoxic lipopolysaccharide (LPS) exposure on day 5 of pregnancy led to: (1) rapid (at 2 h) induction of neutrophil chemoattractants that promoted huge neutrophil infiltrations at the EBISs by 24 h; (2) rapid (at 2 h) elevation of mRNA levels of MyD88, but not Trif, modulated cytokines at the EBISs; and (3) dose-dependent EBIS defects by day 7 of pregnancy. Yet, elimination of maternal neutrophils using anti-Ly6G antibody prior to LPS exposure failed to avert LPS-induced EBIS defects allowing us to suggest that activation of Tlr4-MyD88 dependent inflammatory pathway is involved in LPS-induced defects at EBISs. Thus, blocking the activation of the Tlr4-MyD88 signaling pathway may be an interesting approach to prevent infection-induced pathology at EBISs.


Assuntos
Lipopolissacarídeos/toxicidade , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/imunologia , Complicações Infecciosas na Gravidez/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Implantação do Embrião , Feminino , Inflamação , Macrófagos , Camundongos , Neutrófilos/metabolismo , Gravidez , Complicações Infecciosas na Gravidez/metabolismo
5.
Mol Cell Biochem ; 476(5): 2181-2192, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33555513

RESUMO

Lichens are the symbiotic association between photobiont algae and mycobiont fungi having diverse phytochemicals. However, they are still an underexplored natural resource for biological activities. In the present report, we have evaluated the anti-brain and anti-cervical cancer activity of tropical lichen, Dirinaria consimilis (DCME) through the cell viability assay, cell cycle analysis, annexin V-FLUOS staining, morphological analysis, ROS-induction mechanism, evaluation of antioxidant levels, and western blotting study. The WST-1-based cell viability assay showed the cytotoxic nature of DCME towards U87 (IC50-52.65 ± 1.04 µg/ml) and HeLa (IC50-77.60 ± 2.23 µg/ml) cells. Interestingly, DCME does not showed any toxicity towards non-malignant fibroblast cell line WI-38 (IC50-685.80 ± 19.51 µg/ml). Furthermore, the cell cycle analysis showed sub-G1 arrest (apoptosis), and annexin V-FLUOS staining showed an increase in early apoptosis population dose-dependently. Confocal-based morphological data confirmed the DNA condensation and fragmentation upon treatment. Furthermore, DCME treatment induces ROS and regulates the levels of antioxidant enzymes (SOD, Catalase, GST, and GSH) in both U87 and HeLa cells. Finally, the western blotting data revealed the increase in Bax/Bcl-2 ratio, activation of Bid, Caspase-8, -9 and -3 along with degradation of PARP. Moreover, regulation of MAP kinases and activation of p53 was also observed upon DCME treatment. Herein, we first reported the anticancer activity of D. consimilis against brain and cervical cancer cells. Performed in-depth anticancer study revealed the ROS-mediated regulation of MAP kinases and activation of caspase cascade in U87 and HeLa cells upon DCME treatment.


Assuntos
Apoptose/efeitos dos fármacos , Ascomicetos/química , Neoplasias Encefálicas/metabolismo , Caspases/metabolismo , Misturas Complexas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Misturas Complexas/química , Feminino , Células HeLa , Humanos , Líquens , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
6.
Anticancer Agents Med Chem ; 20(10): 1173-1187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32188391

RESUMO

BACKGROUND: Breast cancer is the most leading cause of death, with 49.9% of crude incidence rate and 12.9% of crude mortality rate. Natural resources have been extensively used throughout history for better and safer treatment against various diseases. OBJECTIVES: The present study was aimed to investigate the antioxidant and anticancer potential of a tropical lichen Dirinaria consimilis (DCME) and its phytochemical analysis. METHODS: The DCME was preliminarily evaluated for ROS, and RNS scavenging potential. Furthermore, DCME was evaluated for in vitro anticancer activity through cell proliferation assay, cell cycle analysis, annexin V/PI staining, morphological analysis, and western blotting study. Finally, the HPLC and LC-MS analyses were done to identify probable bioactive compounds. RESULTS: The in vitro antioxidant studies showed promising ROS, and RNS scavenging potential of DCME. Moreover, the in vitro antiproliferative study bared the cytotoxic nature of DCME towards MCF-7 (IC50 - 98.58 ± 6.82µg/mL) and non-toxic towards WI-38 (IC50 - 685.85 ± 19.51µg/mL). Furthermore, the flow-cytometric analysis revealed the increase in sub G1 population as well as early apoptotic populations dose-dependently. The results from confocal microscopy showed the DNA fragmentation in MCF-7 upon DCME treatment. Finally, the western blotting study revealed the induction of tumor suppressor protein, p53, which results in increasing the Bax/Bcl-2 ratio and activation of caspase-cascade pathways. CONCLUSION: The activation of caspase-3, -8, -9 and PARP degradation led us to conclude that DCME induces apoptosis in MCF-7 through both intrinsic and extrinsic mechanisms. The LC-MS analysis showed the presence of various bioactive compounds.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ascomicetos/química , Caspases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
7.
Curr Drug Discov Technol ; 16(2): 210-222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29669498

RESUMO

BACKGROUND: Farsetia hamiltonii Royle, also known as Hiran Chabba grows in desert regions. It is widely used as folk medicine to treat joint pains, diarrhea and diabetes. However, its antioxidant and iron chelation abilities both in vitro and in vivo have not yet been investigated. METHODS: The 70% methanolic extract of F. hamiltonii (FHME) was investigated for its free radical scavenging and iron chelation potential, in vitro. An iron-overload situation was established by intraperitoneal injection of iron-dextran in Swiss albino mice, followed by oral administration of FHME. Liver damage and serum parameters due to iron-overload were measured biochemically and histopathologically to test iron-overload remediation and hepatoprotective potential of FHME. Phytochemical analyses were performed to determine its probable bioactive components. RESULTS: FHME showed promising antioxidant activity, scavenged various reactive oxygen and nitrogen species and chelated iron in vitro. FHME reduced liver iron, serum ferritin, normalized serum parameters, reduced oxidative stress in liver, serum and improved liver antioxidant status in ironoverloaded mice. It also alleviated liver damage and fibrosis as evident from biochemical parameters and morphological analysis of liver sections. The phytochemical analyses of FHME reflected the presence of alkaloids, phenols, flavonoids and tannins. HPLC analysis indicated presence of tannic acid, quercetin, methyl gallate, catechin, reserpine, ascorbic acid and gallic acid. CONCLUSION: Based on the experimental outcome, FHME, an ethnologically important plant can be envisaged as excellent antioxidant and iron chelator drug capable of remediating iron-overload induced hepatotoxicity and the bioactive compounds present in FHME might be responsible for its efficacy.


Assuntos
Antioxidantes/uso terapêutico , Brassicaceae , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/química , Benzotiazóis/química , Ferro/química , Quelantes de Ferro/química , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/patologia , Masculino , Camundongos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Oxigênio/química , Ácidos Sulfônicos/química
8.
J Nat Prod ; 81(9): 1956-1961, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30215255

RESUMO

The search for new plant-based anti-inflammatory drugs continues in order to overcome the detrimental side effects of conventional anti-inflammatory agents, both steroidal and nonsteroidal. This study involves the quinoline SPE2, 7-hydroxy-6-methoxyquinolin-2(1 H)-one, isolated from the EtOAc fraction of Spondias pinnata bark. Structure elucidation was done using analytical spectroscopic methods including Fourier transform infrared spectroscopy, high-resolution electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy, and single-crystal X-ray crystallography. The anti-inflammatory activity of SPE2 was evaluated in a lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 model. SPE2 effectively suppressed LPS-induced overproduction of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß, and reactive oxygen species. Expression levels of NO synthesizing enzyme, cyclooxygenase-2, TNF-α, IL-6 and IL-1ß were also determined to return to normal after SPE2 treatment. Localization of NF-κB was evaluated by confocal microscopy and Western blotting, which showed a dose-dependent reduction of NF-κB inside the nucleus and an increase in cytoplasmic NF-κB with SPE2 treatment. Collectively, the results suggest that SPE2 has anti-inflammatory activity via inhibition of NF-κB activation.


Assuntos
Anacardiaceae/química , Anti-Inflamatórios/farmacologia , Quinolinas/farmacologia , Animais , Espectroscopia de Ressonância Magnética , Camundongos , NF-kappa B/antagonistas & inibidores , Casca de Planta/química , Quinolinas/química , Quinolinas/isolamento & purificação , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
9.
Biomed Pharmacother ; 106: 454-465, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29990833

RESUMO

Iron is a vital element required for normal cellular physiology in animal systems, but excess iron accumulation in the biological system accelerates oxidative stress, cellular toxicity, tissue injury and organ fibrosis, which ultimately leads to the generation of chronic liver diseases including cancer. A natural antioxidant, ellagic acid (EA) has been previously reported for its pharmacological properties; however, there is no significant evidence available that could illustrate its protective potential against iron-overload induced hepatotoxicity. In the present work, EA was evaluated for its in vitro free radical scavenging and iron chelation potentials. Further, EA was tested in vivo for its protective activity against iron overload-induced hepatotoxicity in Swiss albino mice by evaluating liver iron content, reactive oxygen species (ROS), liver antioxidant enzymes, serum marker levels, liver damage and fibrosis, histopathological study and finally western blotting analysis. EA treatment significantly decreased liver iron and serum ferritin levels. Elevated ROS levels, decreased antioxidant parameters and elevated serum markers were normalized upon treatment with EA. Cellular morphology, iron -overload and liver fibrosis were found to be effectively ameliorated. Finally, the protective effect of EA against iron overload-induced apoptosis was confirmed by western blotting when its treatment upregulated the expressions of caspase-3 and poly(ADP-ribose) polymerase (PARP) proteins. EA revealed hepatoprotective activity against iron overload-induced toxicity through scavenging free radicals, inhibiting excess ROS production, normalizing liver damage parameters and upregulating caspase-3, PARP expression. Collectively, our findings support the possible use of the natural antioxidant EA as a promising candidate against iron-overloaded diseases.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Clerodendrum , Ácido Elágico/farmacologia , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/tratamento farmacológico , Ferro/metabolismo , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta , Animais , Antioxidantes/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Clerodendrum/química , Citoproteção , Relação Dose-Resposta a Droga , Ácido Elágico/isolamento & purificação , Ferritinas/sangue , Quelantes de Ferro/isolamento & purificação , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos , Fitoterapia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Plantas Medicinais , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
10.
Environ Toxicol ; 33(5): 603-618, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29446234

RESUMO

Tannic acid (TA), a water soluble natural polyphenol with 8 gallic acids groups, is abundantly present in various medicinal plants. Previously TA has been investigated for its antimicrobial and antifungal properties. Being a large polyphenol, TA chelates more than 1 metal. Hence TA has been explored for potent antioxidant activities against reactive oxygen species (ROS), reactive nitrogen species (RNS) and as iron chelator in vitro thereby mitigating iron-overload induced hepatotoxicity in vivo. Iron dextran was injected intraperitoneally in Swiss albino mice to induce iron-overload triggered hepatotoxicity, followed by oral administration of TA for remediation. After treatment, liver, spleen, and blood samples were processed from sacrificed animals. The liver iron, serum ferritin, serum markers, ROS, liver antioxidant status, and liver damage parameters were assessed, followed by histopathology and protein expression studies. Our results show that TA is a prominent ROS and RNS scavenger as well as iron chelator in vitro. It also reversed the ROS levels in vivo and restricted the liver damage parameters as compared to the standard drug, desirox. Moreover, this natural polyphenol exclusively ameliorates the histopathological and fibrotic changes in liver sections reducing the iron-overload, along with chelation of liver iron and normalization of serum ferritin. The protective role of TA against iron-overload induced apoptosis in liver was further supported by changed levels of caspase 3, PARP as well as Bax/BCl-2 ratio. Thus, TA can be envisaged as a better orally administrable iron chelator to reduce iron-overload induced hepatotoxicity through ROS regulation.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/complicações , Taninos/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ferro/toxicidade , Sobrecarga de Ferro/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
11.
Chemistry ; 23(68): 17199-17203, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28961334

RESUMO

Novel Ru (2+2) rectangles were designed and synthesized by self-assembly of a new thiophene-functionalized dipyridyl BODIPY ligand, BDPS, and ruthenium(II) precursors. The complexes exhibited dose-dependent antiproliferative activities against cancer cells, in which some compounds selectively kill cancer cells. The net fluorescence due to BODIPY allowed us to visualize their location inside cancer cells. Moreover, the metalla-rectangles displayed substantial propensity to bind with biomolecules.


Assuntos
Antineoplásicos/química , Compostos de Boro/química , Complexos de Coordenação/química , Rutênio/química , Tiofenos/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Cristalografia por Raios X , Humanos , Microscopia Confocal , Conformação Molecular , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria
12.
Pharmacogn Mag ; 13(Suppl 2): S344-S353, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28808404

RESUMO

BACKGROUND: Free radicals such as reactive oxygen and nitrogen species, generated in the body, play an important role in the fulfillment of various physiological functions but their imbalance in the body lead to cellular injury and various clinical disorders such as cancer, neurodegenaration, and inflammation. OBJECTIVE: The objective of this study is to fight this problem, natural antioxidant from plants can be considered as possible protective agents against various diseases such as cancer which might also modify the redox microenvironment to reduce the genetic instability. This study was designed to evaluate the antioxidant and antiproliferative potential of Clerodendrum viscosum fractions against various carcinomas. MATERIALS AND METHODS: In this present study, 70% methanolic extract of C. viscosum leaves have been fractionated to obtain hexane, chloroform, ethyl acetate, butanol, and water fractions, which were tested for their antioxidant and anticancer properties. RESULTS: It was observed that chloroform and ethyl acetate fractions showed good free radical scavenging properties as well as inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cells. Moreover, they arrested the cell cycle at G2/M phase of breast and brain cancer. These inhibitory effects were further confirmed by bromodeoxyuridine uptake imaging. Phytochemical investigations further indicate the presence of tannic acid, quercetin, ellagic caid, gallic acid, reserpine, and methyl gallate which might be the reason for these fractions' antioxidant and antiproliferative activities. CONCLUSION: Clerodendrum viscosum leaf chloroform and Clerodendrum viscosum leaf ethyl acetate fractions from C. viscosum showed good reactive oxygen species and reactive nitrogen species scavenging potential. Both the fractions arrested cell cycle at G2/M phase in MCF-7 and U87 cells which lead to induce apoptosis. SUMMARY: Crude extract of Clerodendrum viscosum leaves was fractionated using different solventsAmong them, chloroform and ethyl acetate fractions exhibited excellent free radical scavenging propertiesThe same fractions inhibited the proliferation of human lung cancer (A459), breast (MCF-7), and brain (U87) cellsChloroform and ethyl acetate fractions arrested the cell cycle at G2/M phase of breast and brain cancerPhytochemical investigations further indicate the presence of several bioactive principles present in them. Abbreviations used: CVLME: Clerodendrum viscosum leaf methanolic extract; CVLH: Clerodendrum viscosum leaf hexane; CVLC: Clerodendrum viscosum leaf chloroform; CVLE: Clerodendrum viscosum leaf ethyl acetate; CVLB: Clerodendrum viscosum leaf butanol; CVLW: Clerodendrum viscosum leaf water; BrdU: Bromodeoxyuridine; WST-1: Water soluble tetrazolium salt.

13.
Cytotechnology ; 69(2): 201-216, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28004224

RESUMO

Terminalia belerica Roxb. fruits have been previously reported against diabetes, ulcer, microbial problems and hepatotoxicity. The present study was aimed to investigate antioxidant and anticancer potential of sequentially fractionated hexane (TBHE), chloroform (TBCE), ethyl acetate (TBEE), butanol (TBBE) and water (TBWE) extracts from the 70% methanolic extract of T. belerica fruits. TBCE, TBEE, TBBE and TBWE showed excellent ROS (reactive oxygen species) and RNS (reactive nitrogen species) scavenging activities which was investigated using 11 different assays for various free radicals. Among 5 fractions, TBHE and TBCE remained nontoxic to any of the malignant cell lines including normal cells (WI-38). TBBE and TBWE inhibited the proliferation of breast (MCF-7), cervical (HeLa) and brain (U87) cancer cells by inducing G2/M arrest while TBEE caused apoptosis. However, these fractions did not inhibit the proliferation of lung (A549) and liver (HepG2) cancer cells. BrdU incorporation study also suggested the efficient anticancer potential of TBEE, TBBE and TBWE. Moreover, TBBE and TBWE treated MCF-7, HeLa and U87 cells showed upregulation of p53 and p21 proteins. Phytochemical analysis reflected the presence of adequate quantities of different phytochemicals. Moreover, HPLC analysis show peaks of purpurin, catechin, tannic acid, reserpine, ellagic acid, methyl gallate, aconitine and rutin in TBBE, TBWE and TBEE. Hence these polar extracts of T. belerica can be used to develop drug against different types of cancer.

14.
BMC Complement Altern Med ; 16: 262, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27472924

RESUMO

BACKGROUND: Iron in the overloaded condition in liver promotes the overproduction of free radicals that lead to oxidative stress and ultimately hepatic damage. The present study was designed to evaluate the ameliorating potential from iron overloaded hepatotoxicity by the glycosidic fraction from Spondious pinnata bark (SPW1) along with its antioxidant property. METHODS: The fraction was tested for its in vitro antioxidant, free radical scavenging property and iron chelation potential via standard biochemical assays. Iron overload condition was generated by the intraperitoneal administration of iron dextran in mice. The levels of serum enzymes, antioxidant enzymes in liver, markers of hepatic damage, liver iron, and ferritin content were measured in response to the oral treatment of SPW1. Histopathology of the liver sections was performed for visual confirmation of the amelioration potential of SPW1. RESULTS: The fraction exhibited excellent in vitro antioxidant as well as free radical scavenging potential against both reactive oxygen species and reactive nitrogen species. Administration of SPW1 significantly normalized the disturbed levels of antioxidant enzymes, liver iron, lipid peroxidation, liver fibrosis, serum enzyme and ferritin better than standard desirox which were also supported by the morphological study of the liver sections. Phytochemical analysis as well as HPLC study, confirmed that the fraction mainly consisted of glycosidic phenolics and flavonoids that attributed to its biological activities. CONCLUSIONS: The above results suggested that beneficial effects of SPW1 on iron overload induced hepatotoxicity that can be considered as a possible candidate against iron overload diseases.


Assuntos
Anacardiaceae/química , Antioxidantes/farmacologia , Glicosídeos/farmacologia , Sobrecarga de Ferro/metabolismo , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Glicosídeos/química , Masculino , Camundongos , Casca de Planta/química , Extratos Vegetais/química
15.
BMC Pharmacol Toxicol ; 17(1): 34, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27459849

RESUMO

BACKGROUND: Crude Spondias pinnata bark extract was previously assessed for its antioxidant, anticancer and iron chelating potentials. The isolated compounds gallic acid (GA) and methyl gallate (MG) were evaluated for their curative potential against iron overload-induced liver fibrosis and hepatocellular damage. METHODS: In vitro iron chelation property and in vivo ameliorating potential from iron overload induced liver toxicity of GA and MG was assessed by different biochemical assays and histopathological studies. RESULTS: MG and GA demonstrated excellent reducing power activities but iron chelation potential of MG is better than GA. Oral MG treatment in mice displayed excellent efficacy (better than GA) to significantly restore the levels of liver antioxidants, serum markers and cellular reactive oxygen species in a dose-dependent fashion. Apart from these, MG exceptionally prevented lipid peroxidation and protein oxidation whereas GA demonstrated better activity to reduce collagen content, thereby strengthening its position as an efficient drug against hepatic damage/fibrosis, which was further supported by histopathological studies. Alongside, MG efficiently eliminated the cause of liver damage, i.e., excess iron, by chelating free iron and reducing the ferritin-bound iron. CONCLUSIONS: The present study confirmed the curative effect of GA and MG against iron overload hepatic damage via their potent antioxidant and iron-chelating potential.


Assuntos
Anacardiaceae , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Fenóis/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Relação Dose-Resposta a Droga , Quelantes de Ferro/isolamento & purificação , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fenóis/isolamento & purificação , Fenóis/farmacologia , Casca de Planta , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
16.
Cancer Cell Int ; 16: 51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27366113

RESUMO

BACKGROUND: Euglena tuba, a microalga, is known for its excellent antioxidant and iron-chelation activities; however its anticancer efficacies have not been reported yet. This study investigates the antitumor and antimetastatic activities of 70 % methanolic extract of Euglena tuba (ETME) against human lung (A549) and breast cancer (MCF-7) cells in vitro. Moreover, we had examined ETME's role in inducing intracellular ROS with the regulation of antioxidants and MAPK pathway. METHODS: Anticancer activity of ETME was thoroughly studied using flow cytometry, confocal microscopy and western blotting; along with various biochemical assays for analysing ROS-induced regulation of antioxidant enzymes. Inhibition of invasion and migration of malignant cells by ETME were investigated by wound healing and zymographic studies. DNA-Protein interaction with ETME was also studied. RESULTS: ETME inhibited the growth of both A549 (IC50 92.14 µg/ml) and MCF-7 cells (IC50 50.27 µg/ml) by inducing apoptosis, while remained non-toxic against nomral WI-38 cells (IC50 911.43 µg/ml). ETME treatment resulted in increasing Bax/Bcl-2 ratio, BID truncation and activation of caspase cascade. This ultimately leads to PARP degradation and apoptosis through the intrinsic and extrinsic pathway in both A549 and MCF-7 cells. Wound healing and gelatin zymography studies revealed that ETME significantly inhibited the invasion and migration of both A549 and MCF-7 cells dose-dependently through the downregulation of MMP-9. Further investigations showed that ETME selectively induces intracellular ROS, regulated the levels of intracellular antioxidants and suppresses the activation of ERK1/2, JNK, P38 mitogen-activated protein kinase pathways in both type of malignant cells. Further DNA and protein binding studies revealed that ETME strongly interact with DNA as well as protein attributing the possibilities of presence of components which are targeting the macromolecules in cancer cells. Moreover, when the identified compounds from ETME were examined for their cytotoxicities individually, it was found that they lost their specificities towards cancer cells and also attacked normal cells. CONCLUSIONS: Our study suggests that ETME retards the growth of both lung and breast cancer cells, in vitro, through multivariate mechanisms, proving its candidature for the development of better and safer drugs against these cancers.

17.
PLoS One ; 10(12): e0144280, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26633891

RESUMO

The antioxidant and restoration potentials of hepatic injury by Prunus nepalensis Ser. (Steud), a wild fruit plant from the Northeastern region of India, were investigated. The fruit extract (PNME) exhibited excellent antioxidant and reducing properties and also scavenged the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (IC50 = 30.92 ± 0.40 µg/ml). PNME demonstrated promising scavenging potency, as assessed by the scavenging of different reactive oxygen and nitrogen species. Moreover, the extract revealed an exceptional iron chelation capacity with an IC50 of 25.64 ± 0.60 µg/ml. The extract induced significant improvement of hepatic injury and liver fibrosis against iron overload induced hepatotoxicity in mice in a dose-dependent manner, and this effect was supported by different histopathological studies. The phytochemical constitutions and their identification by HPLC confirmed the presence of purpurin, tannic acid, methyl gallate, reserpine, gallic acid, ascorbic acid, catechin and rutin. The identified compounds were investigated for their individual radical scavenging and iron chelation activity; some compounds exhibited excellent radical scavenging and iron chelation properties, but most were toxic towards normal cells (WI-38). On the other hand, crude PNME was found to be completely nontoxic to normal cells, suggesting its feasibility as a safe oral drug. The above study suggests that different phytochemicals in PNME contributed to its free radical scavenging and iron chelation activity; however, further studies are required to determine the pathway in which PNME acts to treat iron-overload diseases.


Assuntos
Antioxidantes/uso terapêutico , Sobrecarga de Ferro/complicações , Cirrose Hepática/etiologia , Cirrose Hepática/prevenção & controle , Fígado/patologia , Extratos Vegetais/uso terapêutico , Prunus , Animais , Antioxidantes/farmacologia , Linhagem Celular , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Humanos , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
18.
Indian J Exp Biol ; 53(5): 281-91, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26040025

RESUMO

Liver toxicity due to iron overload leads to oxidative damage of proteins, lipids and nucleic acids which in turn manifests several human diseases. Here, we evaluated the improving effect of Clerodendrum colebrookianum leaf on iron overload induced liver injury along with in vitro iron chelation and the protection of Fenton reaction induced DNA damage was conducted. Iron overload was induced by intraperitoneal administration of iron-dextran into mice. Post oral administration of different doses of the extract (50, 100 and 200 mg/kg body weight) showed significant decrease in different biochemical markers such as liver iron, serum ferritin and serum enzyme levels, along with decreased lipid peroxidation, protein oxidation and collagen content. In addition, the extract effectively enhanced the antioxidant enzyme levels and also exhibited the potential activity of the reductive release of ferritin iron. The protective effect of C. colebrookianum extract on injured liver was furthermore supported by the histopathological studies that showed improvement histologically. In conclusion, the present results demonstrated the hepatoprotective efficiency of C. colebrookianum leaf in iron overloaded mice, and hence, a potential iron chelating drug for iron overload diseases.


Assuntos
Clerodendrum/química , Sobrecarga de Ferro/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Humanos , Ferro/toxicidade , Sobrecarga de Ferro/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Extratos Vegetais/química , Folhas de Planta/química
19.
PLoS One ; 10(5): e0128221, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010614

RESUMO

Free iron typically leads to the formation of excess free radicals, and additional iron deposition in the liver contributes to the oxidative pathologic processes of liver disease. Many pharmacological properties of the insectivorous plant Drosera burmannii Vahl. have been reported in previous studies; however, there is no evidence of its antioxidant or hepatoprotective potential against iron overload. The antioxidant activity of 70% methanolic extract of D. burmannii (DBME) was evaluated. DBME showed excellent DPPH, hydroxyl, hypochlorous, superoxide, singlet oxygen, nitric oxide, peroxynitrite radical and hydrogen peroxide scavenging activity. A substantial iron chelation (IC50 = 40.90 ± 0.31 µg/ml) and supercoiled DNA protection ([P]50 = 50.41 ± 0.55 µg) were observed. DBME also displayed excellent in vivo hepatoprotective activity in iron-overloaded Swiss albino mice compared to the standard desirox treatment. Administration of DBME significantly normalized serum enzyme levels and restored liver antioxidant enzymes levels. DBME lowered the raised levels of liver damage parameters, also reflected from the morphological analysis of the liver sections. DBME also reduced liver iron content by 115.90% which is also seen by Perls' staining. A phytochemical analysis of DBME confirms the presence of various phytoconstituents, including phenols, flavonoids, carbohydrates, tannins, alkaloids and ascorbic acid. Alkaloids, phenols and flavonoids were abundantly found in DBME. An HPLC analysis of DBME revealed the presence of purpurin, catechin, tannic acid, reserpine, methyl gallate and rutin. Purpurin, tannic acid, methyl gallate and rutin displayed excellent iron chelation but exhibited cytotoxicity toward normal (WI-38) cells; while DBME found to be non-toxic to the normal cells. These findings suggest that the constituents present in DBME contributed to its iron chelation activity. Additional studies are needed to determine if DBME can be used as a treatment for iron overload diseases.


Assuntos
Antioxidantes/farmacologia , Drosera/química , Sobrecarga de Ferro/tratamento farmacológico , Ferro/efeitos adversos , Fígado , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Ferro/farmacologia , Sobrecarga de Ferro/induzido quimicamente , Sobrecarga de Ferro/metabolismo , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Extratos Vegetais/química
20.
Pharm Biol ; 53(7): 1066-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25609151

RESUMO

CONTEXT: Nerium indicum Mill. (Apocynaceae) was reported for its efficient in vitro antioxidant and iron-chelating properties. OBJECTIVE: This study demonstrates the effect of 70% methanol extract of N. indicum leaf (NIME) towards in vitro DNA protection and ameliorating iron-overload-induced liver damage in mice. MATERIALS AND METHODS: Phytochemical and HPLC analyses were carried out to standardize the extract and the effect of Fe(2+)-mediated pUC18 DNA cessation was studied. Thirty-six Swiss Albino mice were divided into six groups of blank, negative control (iron overload only), and iron-overloaded mice receiving 50, 100, and 200 mg/kg b.w. doses of NIME and desirox (20 mg/kg b.w.). The biochemical markers of hepatic damage, various liver and serum parameters, and reductive release of ferritin iron were studied. RESULTS AND DISCUSSION: The presence of different phytocomponents was revealed from phytochemical and HPLC analyses. A substantial supercoiled DNA protection, with [P]50 of 70.33 ± 0.32 µg, was observed. NIME (200 mg/kg b.w.) significantly normalized the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and bilirubin by 126.27, 125.25, 188.48, and 45.47%, respectively. NIME (200 mg/kg b.w.) was shown to alleviate the reduced levels of superoxide dismutase, catalase, glutathione-S-transferase, and non-enzymatic-reduced glutathione, by 48.95, 35.9, 35.42, and 13.22%, respectively. NIME also lowered raised levels of lipid peroxidation, protein carbonyl, hydroxyproline, and liver iron by 32.28, 64.58, 136.81, and 83.55%, respectively. CONCLUSION: These findings suggest that the active substances present in NIME may be capable of lessening iron overload-induced toxicity, and possibly be a useful drug for iron-overloaded diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Complexo Ferro-Dextran/toxicidade , Nerium , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Folhas de Planta , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...